Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nature ; 627(8005): 839-846, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38509363

RESUMO

The bone marrow adjusts blood cell production to meet physiological demands in response to insults. The spatial organization of normal and stress responses are unknown owing to the lack of methods to visualize most steps of blood production. Here we develop strategies to image multipotent haematopoiesis, erythropoiesis and lymphopoiesis in mice. We combine these with imaging of myelopoiesis1 to define the anatomy of normal and stress haematopoiesis. In the steady state, across the skeleton, single stem cells and multipotent progenitors distribute through the marrow enriched near megakaryocytes. Lineage-committed progenitors are recruited to blood vessels, where they contribute to lineage-specific microanatomical structures composed of progenitors and immature cells, which function as the production sites for each major blood lineage. This overall anatomy is resilient to insults, as it was maintained after haemorrhage, systemic bacterial infection and granulocyte colony-stimulating factor (G-CSF) treatment, and during ageing. Production sites enable haematopoietic plasticity as they differentially and selectively modulate their numbers and output in response to insults. We found that stress responses are variable across the skeleton: the tibia and the sternum respond in opposite ways to G-CSF, and the skull does not increase erythropoiesis after haemorrhage. Our studies enable in situ analyses of haematopoiesis, define the anatomy of normal and stress responses, identify discrete microanatomical production sites that confer plasticity to haematopoiesis, and uncover unprecedented heterogeneity of stress responses across the skeleton.


Assuntos
Hematopoese , Células-Tronco Hematopoéticas , Estresse Fisiológico , Animais , Feminino , Masculino , Camundongos , Envelhecimento/fisiologia , Infecções Bacterianas/patologia , Infecções Bacterianas/fisiopatologia , Vasos Sanguíneos/citologia , Linhagem da Célula , Eritropoese , Fator Estimulador de Colônias de Granulócitos/metabolismo , Hematopoese/fisiologia , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/metabolismo , Hemorragia/patologia , Hemorragia/fisiopatologia , Linfopoese , Megacariócitos/citologia , Células-Tronco Multipotentes/citologia , Células-Tronco Multipotentes/metabolismo , Mielopoese , Crânio/irrigação sanguínea , Crânio/patologia , Crânio/fisiopatologia , Esterno/irrigação sanguínea , Esterno/citologia , Esterno/metabolismo , Estresse Fisiológico/fisiologia , Tíbia/irrigação sanguínea , Tíbia/citologia , Tíbia/metabolismo
2.
Cell Rep ; 43(2): 113749, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38329876

RESUMO

Aberrant long interspersed element 1 (LINE-1 or L1) activity can cause insertional mutagenesis and chromosomal rearrangements and has been detected in several types of cancers. Here, we show that neddylation, a post-translational modification process, is essential for L1 transposition. The antineoplastic drug MLN4924 is an L1 inhibitor that suppresses NEDD8-activating enzyme activity. Neddylation inhibition by MLN4924 selectively impairs ORF2p-mediated L1 reverse transcription and blocks the generation of L1 cDNA. Consistent with these results, MLN4924 treatment suppresses the retrotransposition activity of the non-autonomous retrotransposons short interspersed nuclear element R/variable number of tandem repeat/Alu and Alu, which rely on the reverse transcription activity of L1 ORF2p. The E2 enzyme UBE2M in the neddylation pathway, rather than UBE2F, is required for L1 ORF2p and retrotransposition. Interference with the functions of certain neddylation-dependent Cullin-really interesting new gene E3 ligases disrupts L1 reverse transcription and transposition activity. Our findings provide insights into the regulation of L1 retrotransposition and the identification of therapeutic targets for L1 dysfunctions.


Assuntos
Ciclopentanos , Elementos Nucleotídeos Longos e Dispersos , Pirimidinas , Retroelementos , Humanos , Elementos Nucleotídeos Longos e Dispersos/genética , Retroelementos/genética , Aberrações Cromossômicas , Proteínas Culina/genética , Enzimas de Conjugação de Ubiquitina
3.
Nat Metab ; 6(3): 531-549, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38409606

RESUMO

Ageing increases susceptibility to neurodegenerative disorders, such as Alzheimer's disease (AD). Serum levels of sclerostin, an osteocyte-derived Wnt-ß-catenin signalling antagonist, increase with age and inhibit osteoblastogenesis. As Wnt-ß-catenin signalling acts as a protective mechanism for memory, we hypothesize that osteocyte-derived sclerostin can impact cognitive function under pathological conditions. Here we show that osteocyte-derived sclerostin can cross the blood-brain barrier of old mice, where it can dysregulate Wnt-ß-catenin signalling. Gain-of-function and loss-of-function experiments show that abnormally elevated osteocyte-derived sclerostin impairs synaptic plasticity and memory in old mice of both sexes. Mechanistically, sclerostin increases amyloid ß (Aß) production through ß-catenin-ß-secretase 1 (BACE1) signalling, indicating a functional role for sclerostin in AD. Accordingly, high sclerostin levels in patients with AD of both sexes are associated with severe cognitive impairment, which is in line with the acceleration of Αß production in an AD mouse model with bone-specific overexpression of sclerostin. Thus, we demonstrate osteocyte-derived sclerostin-mediated bone-brain crosstalk, which could serve as a target for developing therapeutic interventions against AD.


Assuntos
Doença de Alzheimer , Humanos , Masculino , Feminino , Camundongos , Animais , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/uso terapêutico , Secretases da Proteína Precursora do Amiloide/metabolismo , Secretases da Proteína Precursora do Amiloide/uso terapêutico , Osteócitos/metabolismo , Osteócitos/patologia , beta Catenina/metabolismo , beta Catenina/uso terapêutico , Ácido Aspártico Endopeptidases/metabolismo , Ácido Aspártico Endopeptidases/uso terapêutico , Via de Sinalização Wnt , Cognição , Envelhecimento
4.
Immun Inflamm Dis ; 12(1): e1150, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38270308

RESUMO

BACKGROUND: Recently, many studies have been conducted to examine immune response modification at epigenetic level, but the candidate effect of RNA 5-methylcytosine (m5 C) modification on tumor microenvironment (TME) of acute myeloid leukemia (AML) is still unknown at present. METHODS: We assessed the patterns of m5 C modification among 417 AML cases by using nine m5 C regulators. Thereafter, we associated those identified modification patterns with TME cell infiltration features. Additionally, stepwise regression and LASSO Cox regression analyses were conducted for quantifying patterns of m5 C modification among AML cases to establish the m5 C-score. Meanwhile, we validated the expression of genes in the m5C-score model by qRT-PCR. Finally, the present work analyzed the association between m5 C-score and AML clinical characteristics and prognostic outcomes. RESULTS: In total, three different patterns of m5 C modification (m5 C-clusters) were identified, and highly differentiated TME cell infiltration features were also identified. On this basis, evaluating patterns of m5 C modification in single cancer samples was important for evaluating the immune/stromal activities in TME and for predicting prognosis. In addition, the m5 C-score was established, which showed a close relation with the overall survival (OS) of test and training set samples. Moreover, multivariate Cox analysis suggested that our constructed m5 C-score served as the independent predicting factor for the prognosis of AML (hazard ratio = 1.57, 95% confidence interval = 1.38-1.79, p < 1e-5 ). CONCLUSIONS: This study shows that m5 C modification may be one of the key roles in the formation of diversity and complexity of TME. Meanwhile, assessing the patterns of m5 C modification among individual cancer samples is of great importance, which provides insights into cell infiltration features within TME, thereby helping to develop relevant immunotherapy and predict patient prognostic outcomes.


Assuntos
Leucemia Mieloide Aguda , Microambiente Tumoral , Humanos , Microambiente Tumoral/genética , Leucemia Mieloide Aguda/genética , RNA , Diferenciação Celular , Metilação
5.
J Virol ; 98(2): e0190923, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38289118

RESUMO

Pyroptosis, a pro-inflammatory programmed cell death, has been implicated in the pathogenesis of coronavirus disease 2019 and other viral diseases. Gasdermin family proteins (GSDMs), including GSDMD and GSDME, are key regulators of pyroptotic cell death. However, the mechanisms by which virus infection modulates pyroptosis remain unclear. Here, we employed a mCherry-GSDMD fluorescent reporter assay to screen for viral proteins that impede the localization and function of GSDMD in living cells. Our data indicated that the main protease NSP5 of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) blocked GSDMD-mediated pyroptosis via cleaving residues Q29 and Q193 of GSDMD. While another SARS-CoV-2 protease, NSP3, cleaved GSDME at residue G370 but activated GSDME-mediated pyroptosis. Interestingly, respiratory enterovirus EV-D68-encoded proteases 3C and 2A also exhibit similar differential regulation on the functions of GSDMs by inactivating GSDMD but initiating GSDME-mediated pyroptosis. EV-D68 infection exerted oncolytic effects on human cancer cells by inducing pyroptotic cell death. Our findings provide insights into how respiratory viruses manipulate host cell pyroptosis and suggest potential targets for antiviral therapy as well as cancer treatment.IMPORTANCEPyroptosis plays a crucial role in the pathogenesis of coronavirus disease 2019, and comprehending its function may facilitate the development of novel therapeutic strategies. This study aims to explore how viral-encoded proteases modulate pyroptosis. We investigated the impact of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and respiratory enterovirus D68 (EV-D68) proteases on host cell pyroptosis. We found that SARS-CoV-2-encoded proteases NSP5 and NSP3 inactivate gasdermin D (GSDMD) but initiate gasdermin E (GSDME)-mediated pyroptosis, respectively. We also discovered that another respiratory virus EV-D68 encodes two distinct proteases 2A and 3C that selectively trigger GSDME-mediated pyroptosis while suppressing the function of GSDMD. Based on these findings, we further noted that EV-D68 infection triggers pyroptosis and produces oncolytic effects in human carcinoma cells. Our study provides new insights into the molecular mechanisms underlying virus-modulated pyroptosis and identifies potential targets for the development of antiviral and cancer therapeutics.


Assuntos
Endopeptidases , Enterovirus Humano D , Interações entre Hospedeiro e Microrganismos , Vírus Oncolíticos , Piroptose , SARS-CoV-2 , Humanos , Linhagem Celular Tumoral , COVID-19/metabolismo , COVID-19/terapia , COVID-19/virologia , Endopeptidases/genética , Endopeptidases/metabolismo , Enterovirus Humano D/enzimologia , Enterovirus Humano D/genética , Infecções por Enterovirus/metabolismo , Infecções por Enterovirus/virologia , Gasderminas/antagonistas & inibidores , Gasderminas/genética , Gasderminas/metabolismo , Terapia Viral Oncolítica , Vírus Oncolíticos/enzimologia , Vírus Oncolíticos/genética , SARS-CoV-2/enzimologia , SARS-CoV-2/genética , Proteínas Virais/genética , Proteínas Virais/metabolismo
6.
Angew Chem Int Ed Engl ; 62(48): e202313429, 2023 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-37840440

RESUMO

The oxidosqualene cyclase (OSC) catalyzed cyclization of the linear substrate (3S)-2,3-oxidosqualene to form diverse pentacyclic triterpenoid (PT) skeletons is one of the most complex reactions in nature. Friedelin has a unique PT skeleton involving a fascinating nine-step cation shuttle run (CSR) cascade rearrangement reaction, in which the carbocation formed at C2 moves to the other side of the skeleton, runs back to C3 to yield a friedelin cation, which is finally deprotonated. However, as crystal structure data of plant OSCs are lacking, it remains unknown why the CSR cascade reactions occur in friedelin biosynthesis, as does the exact catalytic mechanism of the CSR. In this study, we determined the first cryogenic electron microscopy structure of a plant OSC, friedelin synthase, from Tripterygium wilfordii Hook. f (TwOSC). We also performed quantum mechanics/molecular mechanics simulations to reveal the energy profile for the CSR cascade reaction and identify key residues crucial for PT skeleton formation. Furthermore, we semirationally designed two TwOSC mutants, which significantly improved the yields of friedelin and ß-amyrin, respectively.


Assuntos
Transferases Intramoleculares , Triterpenos , Triterpenos/química , Transferases Intramoleculares/genética , Catálise , Cátions
7.
Environ Sci Pollut Res Int ; 30(46): 102363-102373, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37665437

RESUMO

A novel SnO2-Sb/AP (attapulgite) particle electrode was prepared for three-dimensional electrocatalytic oxidation (3D/EO) of organic pollutants using a co-sintering method. The electrochemical properties and micromorphology were determined using polarization, cyclic voltammetry (CV), and field emission scanning electron microscope (FE-SEM), and compared with activated carbon (AC), AP, and TiO2/AP particle electrodes. Besides, their potential application in the electrochemical degradation of phenol was investigated. The SnO2-Sb/AP particle electrode exhibited higher electrochemical activity than other particle electrodes due to its large number of active sites, low transfer coefficient (α, 0.12), and high-volt ampere charge (q*, 1.18 C·cm-2). The electrochemical CODCr degradation efficiency (100%) of phenol on SnO2-Sb/AP particle electrodes is much higher than for other particle electrodes. Moreover, an excellent stability of the SnO2-Sb/AP particle electrode is also verified by repeated experiments. These results indicate that the SnO2-Sb/AP particle electrodes broaden the application area of clays and are expected to be a promising method for 3D/EO.

8.
Biomed Pharmacother ; 167: 115511, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37729733

RESUMO

Corydalis yanhusuo W. T. Wang, also known as yanhusuo, yuanhu, yanhu and xuanhu, is one of the herb components of many Chinese Traditional Medicine prescriptions such as Jin Ling Zi San and Yuanhu-Zhitong priscription. C. yanhusuo was traditionally used to relieve pain and motivate blood and Qi circulation. Now there has been growing interest in pharmacological effects of alkaloids, the main bioactive components of C. yanhusuo. Eighty-four alkaloids isolated from C. yanhusuo are its important bioactive components and can be characterized into protoberberine alkaloids, aporphine alkaloids, opiate alkaloids and others and proper extraction or co-administration methods modulate their contents and efficacy. Alkaloids from C. yanhusuo have various pharmacological effects on the nervous system, cardiovascular system, cancer and others through multiple molecular mechanisms such as modulating neurotransmitters, ion channels, gut microbiota, HPA axis and signaling pathways and are potential treatments for many diseases. Plenty of novel drug delivery methods such as autologous red blood cells, self-microemulsifying drug delivery systems, nanoparticles and others have also been investigated to better exert the effects of alkaloids from C. yanhusuo. This review summarized the alkaloid components of C. yanhusuo, their pharmacological effects and mechanisms, and methods of drug delivery to lay a foundation for future investigations.

9.
ACS Appl Mater Interfaces ; 15(39): 45549-45560, 2023 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-37747777

RESUMO

Massive periosteal defects often significantly impair bone regeneration and repair, which have become a major clinical challenge. Unfortunately, current engineered periosteal materials can hardly currently focus on achieving high tissue adhesion property, being suitable for cell growth, and inducing cell orientation concurrently to meet the properties of nature periosteum. Additionally, the preparation of oriented surface nanotopography often relies on professional equipment. In this study, inspired by the oriented collagen structure of nature periosteum, we present a composite artificial periosteum with a layer of oriented nanotopography surface containing carbon nanotubes (CNTs), cross-linked with adhesive polydopamine (PDA) hydrogel on both terminals. An oriented surface structure that can simulate the oriented alignment of periosteal collagen fibers can be quickly and conveniently obtained via a simple stretching of the membrane in a water bath. With the help of CNTs, our artificial periosteum exhibits sufficient mechanical strength and desired oriented nanotopological structure surface, which further induces the directional arrangement of human bone marrow mesenchymal stem cells (hBMSCs) on the membrane. These oriented hBMSCs express significantly higher levels of osteogenic genes and proteins, while the resultant composite periosteum can be stably immobilized in vivo in the rat model of massive calvarial defect through the PDA hydrogel, which finally shows promising bone regeneration ability. We anticipate that the developed functional artificial periosteum has great potential in biomedical applications for the treatment of composite defects of the bone and periosteum.


Assuntos
Nanotubos de Carbono , Periósteo , Ratos , Humanos , Animais , Periósteo/metabolismo , Aderências Teciduais , Osteogênese , Regeneração Óssea , Colágeno/metabolismo , Hidrogéis/química , Engenharia Tecidual
10.
Front Cell Dev Biol ; 11: 1208239, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37266455

RESUMO

Background: Reconstruction of cranial bone defects is one of the most challenging problems in reconstructive surgery, and several biological tissue engineering methods have been used to promote bone repair, such as genetic engineering of bone marrow mesenchymal stem cells (BMSCs). Fibroblast growth factor receptor 2 (Fgfr2) is an important regulator of bone construction and can be used as a potential gene editing site. However, its role in the osteogenesis process of BMSCs remains unclear. This article clarifies the function of Fgfr2 in BMSCs and explores the role of Fgfr2-overexpressed BMSCs carried by light-induced porous hydrogel (GelMA) in the repair of cranial bone defects. Methods: Lenti-virus was used to overexpress Fgfr2 in BMSCs, and cell counting kit-8, transwell, and flow cytometry assays were conducted to investigate the proliferation, migration, and characteristics. After 0, 3, 7, and 10 days of osteogenic or chondrogenic induction, the changes in osteogenic and chondrogenic ability were detected by real-time PCR, western blot, alkaline phosphatase staining, alizarin Red staining, and alcian blue staining. To investigate the viability of BMSCs carried by GelMA, calcein and propyl iodide staining were carried out as well. Finally, a critical cranial bone defect model was established in 6-week-old male mice and micro-computerized tomography, masson staining, and immunohistochemistry of OCN were conducted to test the bone regeneration properties of implanting Fgfr2-overexpressed BMSCs with GelMA in cranial bone defects over 6 weeks. Results: Overexpression of Fgfr2 in BMSCs significantly promoted cell proliferation and migration and increased the percentage of CD200+CD105+ cells. After osteogenic and chondrogenic induction, Fgfr2 overexpression enhanced both osteogenic and chondrogenic ability. Furthermore, in cranial bone defect regeneration, BMSCs carried by light-induced GelMA showed favorable biocompatibility, and Fgfr2-overexpressed BMSCs induced superior cranial bone regeneration compared to a normal BMSCs group and an untreated blank group. Conclusion: In vitro, Fgfr2 enhanced the proliferation, migration, and stemness of BMSCs and promoted osteogenesis and chondrogenesis after parallel induction. In vivo, BMSCs with Fgfr2 overexpression carried by GelMA showed favorable performance in treating critical cranial bone defects. This study clarifies the multiple functions of Fgfr2 in BMSCs and provides a new method for future tissue engineering.

11.
Nat Prod Res ; : 1-8, 2023 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-36787178

RESUMO

Chamaecrista rotundifolia (C. rotundifolia) is a perennial herb of leguminosae, which increasingly being grown as a forage in China. In our search for original bioactive metabolites from Cassia plants, the phytochemical reinvestigation of the C. rotundifolia was carried out, which led to the isolation of three new (1-3) and six known (4-9) chromones. Their structures were confirmed by spectroscopic methods, including extensive 1D and 2D NMR techniques. Compounds 1-9 were evaluated for their anti-rotavirus activities, and the results revealed that compounds 1-9 exhibited potential anti-rotavirus activities with therapeutic index (TI) valves in the range of 12.0 ∼ 20.2, respectively.

12.
Immun Inflamm Dis ; 11(1): e743, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36705422

RESUMO

INTRODUCTION: Chronic periodontitis (CP) is an inflammatory periodontal disease with high incidence and complex pathology. This research is aimed to investigate the function of exosomal miR-205-5p (Exo-miR-205-5p) in CP and the underlying molecular mechanisms. METHOD: Exo-miR-205-5p was isolated from miR-205-5p mimics-transfected periodontal ligament stem cells (PDLSCs), and subsequently cocultured with lipopolysaccharide (LPS)-induced cells or injected into LPS-treated rats. The mRNA expression of inflammatory factors and Th17/Treg-related factors were measured by quantitative real-time PCR. The contents of inflammatory factors and the percentages of Th17/Treg cells were measured by enzyme-linked immunosorbent assay and flow cytometry, respectively. Besides, the target relation between miR-205-5p and X-box binding protein 1 (XBP1) was explored. RESULTS: MiR-205-5p was downregulated in LPS-induced PDLSCs and corresponding exosomes. Exo-miR-205-5p inhibited inflammatory cell infiltration, decreased the production of TNF-α, IL-1ß, and IL-6, and decreased the percentage of Th17 cells in LPS-treated rats. In addition, XBP1 was a target of miR-205-5p. Overexpression of XBP1 weakened the effects of Exo-miR-205-5p on inhibiting inflammation and regulating Treg/Th17 balance in LPS-induced cells. CONCLUSIONS: Exo-miR-205-5p derived from PDLSCs relieves the inflammation and balances the Th17/Treg cells in CP through targeting XBP1.


Assuntos
Periodontite Crônica , MicroRNAs , Células-Tronco , Proteína 1 de Ligação a X-Box , Animais , Ratos , Periodontite Crônica/metabolismo , Periodontite Crônica/patologia , Inflamação/metabolismo , Lipopolissacarídeos/toxicidade , MicroRNAs/genética , Ligamento Periodontal/citologia , Ligamento Periodontal/patologia , Células-Tronco/metabolismo , Proteína 1 de Ligação a X-Box/genética , Proteína 1 de Ligação a X-Box/metabolismo
13.
Turk J Haematol ; 40(2): 82-91, 2023 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-36718632

RESUMO

Objective: This study aimed to investigate the role and mechanism of circular RNA PVT1 (circPVT1) in patients with acute myeloid leukemia (AML). Materials and Methods: The expression of circPVT1 in 23 patients with de novo AML (not acute promyelocytic leukemia, not APL) and cell lines were detected by RT-qPCR. Loss of function assays were carried out to explore the influence of silenced circPVT1 on the proliferation, migration, and apoptosis in the THP-1 cell line. CCK-8 assays, trans-well assays, and annexin V/PI staining assays were performed to assess proliferation, migration, and apoptosis, respectively. Results: CircPVT1 was highly expressed in AML patients and myeloid cell lines compared to healthy controls. Higher expression of circPVT1 was related to shorter overall survival (OS) and relapse-free survival (RFS) in AML patients. Cell viability and migration were inhibited and apoptosis was increased when circPVT1 was knocked down in THP-1 cells. Knockdown of circPVT1 resulted in marked suppression of c-Myc protein with no significant change in mRNA levels. We also found that circPVT1 knockdown markedly increased the phosphorylation of c-Myc Thr-58, which was responsible for c-Myc degradation. Silencing of c-Myc caused a significant decrease in CXCR4 mRNA and protein expression, whereas the overexpression of c-Myc caused the opposite result, suggesting that CXCR4 is a target molecule of c-Myc. Finally, we found that overexpression of c-Myc could partially reverse circPVT1 knockdown-induced anti-tumor effects on THP-1 cells in vitro. Conclusion: Our findings showed that circPVT1 was highly expressed in AML patients and was related to shorter OS and RFS. CircPVT1 may exert an oncogenic effect in THP-1 cells by stabilizing c-Myc protein expression and downstream target CXCR4 expression. These data indicate that circPVT1 may be a promising therapeutic target for AML.


Assuntos
Leucemia Mieloide Aguda , RNA Circular , Receptores CXCR4 , Humanos , Apoptose/genética , Linhagem Celular Tumoral , Proliferação de Células , Leucemia Mieloide Aguda/tratamento farmacológico , Receptores CXCR4/genética , RNA Circular/genética , RNA Mensageiro
14.
Bioact Mater ; 24: 477-496, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36714330

RESUMO

Large bone defects resulting from fractures and disease are a major clinical challenge, being often unable to heal spontaneously by the body's repair mechanisms. Lines of evidence have shown that hypoxia-induced overproduction of ROS in bone defect region has a major impact on delaying bone regeneration. However, replenishing excess oxygen in a short time cause high oxygen tension that affect the activity of osteoblast precursor cells. Therefore, reasonably restoring the hypoxic condition of bone microenvironment is essential for facilitating bone repair. Herein, we designed ROS scavenging and responsive prolonged oxygen-generating hydrogels (CPP-L/GelMA) as a "bone microenvironment regulative hydrogel" to reverse the hypoxic microenvironment in bone defects region. CPP-L/GelMA hydrogels comprises an antioxidant enzyme catalase (CAT) and ROS-responsive oxygen-releasing nanoparticles (PFC@PLGA/PPS) co-loaded liposome (CCP-L) and GelMA hydrogels. Under hypoxic condition, CPP-L/GelMA can release CAT for degrading hydrogen peroxide to generate oxygen and be triggered by superfluous ROS to continuously release the oxygen for more than 2 weeks. The prolonged oxygen enriched microenvironment generated by CPP-L/GelMA hydrogel significantly enhanced angiogenesis and osteogenesis while inhibited osteoclastogenesis. Finally, CPP-L/GelMA showed excellent bone regeneration effect in a mice skull defect model through the Nrf2-BMAL1-autophagy pathway. Hence, CPP-L/GelMA, as a bone microenvironment regulative hydrogel for bone tissue respiration, can effectively scavenge ROS and provide prolonged oxygen supply according to the demand in bone defect region, possessing of great clinical therapeutic potential.

15.
J Med Virol ; 95(1): e28135, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36085352

RESUMO

The ongoing pandemic of severe acute respiratory coronavirus 2 (SARS-CoV-2) is causing a devastating impact on public health worldwide. However, details concerning the profound impact of SARS-CoV-2 on host cells remain elusive. Here, we investigated the effects of SARS-CoV-2-encoded viral proteins on the intracellular activity of long interspersed element 1 (L1) retrotransposons using well-established reporter systems. Several nonstructural or accessory proteins (Nsps) of SARS-CoV-2 (i.e., Nsp1, Nsp3, Nsp5, and Nsp14) significantly suppress human L1 mobility, and these viral L1 inhibitors generate a complex network that modulates L1 transposition. Specifically, Nsp1 and Nsp14 inhibit the intracellular accumulation of L1 open reading frame proteins (ORF1p), whereas Nsp3, Nsp5, and Nsp14 repress the reverse transcriptase activity of L1 ORF2p. Given recent findings concerning the roles of L1 in antiviral immune activation and host genome instability, the anti-L1 activities mediated by SARS-CoV-2-encoded inhibitors suggest that SARS-CoV-2 employs different strategies to optimize the host genetic environment.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , COVID-19/genética , Elementos Nucleotídeos Longos e Dispersos , Proteínas Virais/genética , Proteínas não Estruturais Virais/genética , Proteínas não Estruturais Virais/metabolismo
17.
Water Sci Technol ; 86(5): 1181-1192, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36358054

RESUMO

To explore the effect of low temperature on the anaerobic digestion of pig manure, the anaerobic digestion experiment was carried out under the conditions of inoculum concentration of 30% and TS of 8%. Five low-temperature gradients of 4, 8, 12, 16 and 20 °C were set to study the activities of gas production, pH, solluted chemical oxygen demand (SCOD), volatile fatty acids (VFAs), coenzymes F420 and archaea community composition in the digestion process. The results were demonstrated: as the temperature decreased, the more unstable the gas production became, the less gas production produced, and the later the gas peak occurred. There were no significant peaks at either 4 °C or 8 °C, and the SCOD was unstable over time. From 12 °C, the SCOD increased over time, and the higher the temperature, the faster the growth trend. The pH was always greater than 7.6. 8, 12, 16, 20 °C had different degrees of VFAs accumulation at the late digestion stage. The higher the temperature, the greater the amount of volatile acid accumulation. When the VFAs of each reactor reached the maximum, the proportion of acetic acid also reached the highest. The digestion system of the five treatment groups was dominated by hydrogen-nutrient methanogenic pathway. The results could provide a further reference for the mechanism of anaerobic digestion of pig manure at low temperatures.


Assuntos
Archaea , Esterco , Suínos , Animais , Archaea/metabolismo , Anaerobiose , Temperatura , Ácidos Graxos Voláteis/metabolismo , Reatores Biológicos , Metano/metabolismo
18.
Cell Death Dis ; 13(11): 985, 2022 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-36418313

RESUMO

In the widely used Carbon tetrachloride (CCl4)-induced acute liver injury (ALI) mouse model, hepatocytes are known to die from programmed cell death (PCD) processes including apoptosis and necroptosis. Both in vivo and in vitro experiments showed that CCl4 treatment could induce both apoptosis and necroptosis. Treatment of mice with the apoptosis inducer SMAC mimetic reduced necroptosis, led to less pronounced liver damage, and improved overall liver function. By LC-MS/MS, we found that PP2Acα expression was increased in ALI mice liver, and we confirmed its high expression in subacute hepatitis patients. We observed that ALI severity (including aggravated fibrogenesis) was significantly alleviated in hepatocyte-specific PP2Acα conditional knockout (PP2Acα cKO) mice. Furthermore, the relative extent of apoptosis over necroptosis was increased in the PP2Acα cKO ALI mice. Pursuing the idea that biasing the type of PCD towards apoptosis may reduce liver damage, we found that treatment of PP2Acα cKO ALI mice with the apoptosis inhibitor z-Vad-fmk increased the extent of necroptosis and caused severer damage. Mechanistically, disruption of PP2Acα prevents the dephosphorylation of pASK1(Ser967), thereby preventing the sustained activation of JNK. Inhibition of PP2Acα prevents CCl4-induced liver injury and fibrogenesis by disrupting ASK/JNK pathway mediated PCD signaling, ultimately improving liver function by biasing hepatocytes towards an apoptotic rather than necroptotic cell fate. Thus, targeting PP2A and/or ASK1 to favor apoptotic over necroptotic hepatocyte fate may represent an attractive therapeutic strategy for treating ALI.


Assuntos
Hepatopatias , Sistema de Sinalização das MAP Quinases , Camundongos , Animais , Cromatografia Líquida , Espectrometria de Massas em Tandem , Necrose/patologia , Hepatócitos/metabolismo , Hepatopatias/metabolismo , Camundongos Knockout , Fibrose
19.
Nat Prod Rep ; 39(9): 1856-1875, 2022 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-35913409

RESUMO

Covering: up to 2022Podophyllotoxin (PTOX, 1), a kind of aryltetralin-type lignan, was first discovered in the plant Podophyllum peltatum and its structure was clarified by W. Borsche and J. Niemann in 1932. Due to its potent anti-cancer and anti-viral activities, it is considered one of the molecules most likely to be developed into modern drugs. With the increasing market demand and insufficient storage of natural resources, it is crucial to expand the sources of PTOXs. The original extraction method from plants has gradually failed to meet the requirements, and the biosynthesis and total synthesis have become the forward-looking alternatives. As key enzymes in the biosynthetic pathway of PTOXs and their catalytic mechanisms being constantly revealed, it is possible to realize the heterogeneous biosynthesis of PTOXs in the future. Chemical and chemoenzymatic synthesis also provide schemes for strictly controlling the asymmetric configuration of the tetracyclic core. Currently, the pharmacological activities of some PTOX derivatives have been extensively studied, laying the foundation for clinical candidate drugs. This review focuses primarily on the latest research progress in the biosynthesis, total synthesis, and pharmacological activities of PTOX and its derivatives, providing a more comprehensive understanding of these widely used compounds and supporting the future search for clinical applications.


Assuntos
Lignanas , Podofilotoxina , Vias Biossintéticas , Catálise , Podofilotoxina/farmacologia
20.
Front Oncol ; 12: 967207, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35965557

RESUMO

Objective: The mortality rate of ovarian cancer (OC) is the highest among all gynecologic cancers. To predict the prognosis and the efficacy of immunotherapy, we identified new biomarkers. Methods: The Cancer Genome Atlas (TCGA) and the Genotype-Tissue Expression Project (GTEx) databases were used to extract ovarian cancer transcriptomes. By performing the co-expression analysis, we identified necroptosis-associated long noncoding RNAs (lncRNAs). We used the least absolute shrinkage and selection operator (LASSO) to build the risk model. The qRT-PCR assay was conducted to confirm the differential expression of lncRNAs in the ovarian cancer cell line SK-OV-3. Gene Set Enrichment Analysis, Kaplan-Meier analysis, and the nomogram were used to determine the lncRNAs model. Additionally, the risk model was estimated to evaluate the efficacy of immunotherapy and chemotherapy. We classified necroptosis-associated IncRNAs into two clusters to distinguish between cold and hot tumors. Results: The model was constructed using six necroptosis-associated lncRNAs. The calibration plots from the model showed good consistency with the prognostic predictions. The overall survival of one, three, and five-year areas under the ROC curve (AUC) was 0.691, 0.678, and 0.691, respectively. There were significant differences in the IC50 between the risk groups, which could serve as a guide to systemic treatment. The results of the qRT-PCR assay showed that AL928654.1, AL133371.2, AC007991.4, and LINC00996 were significantly higher in the SK-OV-3 cell line than in the Iose-80 cell line (P < 0.05). The clusters could be applied to differentiate between cold and hot tumors more accurately and assist in accurate mediation. Cluster 2 was more vulnerable to immunotherapies and was identified as the hot tumor. Conclusion: Necroptosis-associated lncRNAs are reliable predictors of prognosis and can provide a treatment strategy by screening for hot tumors.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...